Algorithms for the splitting of formal series; applications to alien differential calculus

نویسندگان

  • Frédéric Fauvet
  • Françoise Richard-Jung
  • Jean Thomann
چکیده

We present algorithms which involve both the splitting of formal series solutions to linear ordinary differential equations with polynomial coefficients into a finite sum of subseries which themselves will be solutions of linear ODEs, and the simplification of the recurrence relations satisfied by their coefficients.When coping with series that are solutions of a given differential equation at an irregular – singular point of rank k ≥ 2, it enables us to reduce the computations to series solutions of an ODE with an irregularity of rank one. In particular, we are able to conduct effective calculations with Écalle’s alien derivations for these series. We apply our techniques to some “accelerating functions” of Écalle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Newtonian Fuzzy numbers and related applications

Although there are many excellent ways presenting the principle of the classical calculus, the novel presentations probably leads most naturally to the development of the non-Newtonian calculus. The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Since this self-contained work is intended for a wide audience, inc...

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order

This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005